A lo del mar creo que ya te lo respondi pero por si fue a otro te lo digo a ti, por la fuerza centripeda y la gravedad tambien tiene algo que ver....
lo de los aviones es facil, aqui te lo explican:
El avión es uno de los medios de tras*porte más utilizados alrededor del mundo. ¿Se ven las rutas aéreas afectadas o beneficiadas por la rotación del planeta?
caracol.com.co
tampoco sientes el avion que se mueve cuando estasa en el pero se mueve!
lo de que el sol se aleja es falso y comprobable por los sentidos, siempre tiene el mismo tamaño.
de las que puse yo ni una refutacion por tu parte, curioso.
Ahh y sobre esto "El desafortunado griego no considero la refracción de la atmósfera" la refraccion atmosferica es un fenomeno que se calcula con una tierra esferica....que cosas!
Pero quitando eso, como es que la refraccion de la atmosfera afecta de forma diferente a dos lugares que esten separados solo 20 kilometros si estan las dos en el mismo plano y practicamente a la misma distancia de la atmosfera?
este video te lo explica muy bien:
es curioso que a pequeña escala sea la curbatura, que a gran escala se de el mismo fenomeno, pero que sea por la refraccion???? que repito, es una formula que se calcula en base a una tierra esferica.
Pero me gustaria oir tu explicacion sobre la refraccion y si ya pusieras un ejemplo y un experimento seria huevonudo, aunque es mucho pedir.
Sólo una pequeña puntualización, la refracción atmosférica puede calcularse igual sea la Tierra plana, esférica, o tenga la forma que tenga, lo único que hay que hacer es integrar la ley de Snell poniendo la variación del índice de refracción en función del punto de la atmósfera, el problema es que el cálculo con la atmósfera real puede ser complicado, porque lo primero es que no tienes observatorios repartidos por la atmósfera para poder medir dicho índice, por lo que habitualmente se parte de una simplificación, dado que el índice de refracción varía fundamentalmente con la presión y la temperatura, y estas dos magnitudes varían aproximadamente con la altura, se integra la ley de Snell suponiendo que a alturas iguales le corresponden índices de refracción iguales, la cuál es complicado en la Tierra esférica, pero trivial en una Tierra plana, porque al ser las capas infinitesimales en las que puedes considerar dividida la atmósfera paralelas a la Tierra, la normal a la superficie de las mismas es siempre la misma (la normal a la Tierra), por lo que los ángulos están medidos respecto a una misma recta, y se tiene:
n1*sen(i1)=n2*sen(r1)
n2*sen(i2)=n3*sen(r2)
y por lo que acabamos de decir, r1=i2, luego n1*sen(i1)=n3*sen(r2), y repitiendo k veces (suponiendo que hay k capas) queda:
n1*sen(i1)=nk*sen(rk)
donde i1=i=angulo incidente de la luz con la atmósfera, rk=r=angulo refractado, medido sobre la superficie terrestre (que es la última capa), n1=1, porque fuera de la atmósfera no hay refracción, y nk=1.00029=índice de refracción en la superficie terrestre (habría que poner el real, con la presión y temperatura del momento de la observación, pero para comprobar si afecta, por ejemplo, en el experimento de Eratóstenes nos vale), es decir:
sen(i)=1.00029*sen(r)
donde r sería el ángulo medido, e i el ángulo con el que la luz, por ejemplo del Sol, llega a la atmósfera (en ambos casos respecto a la normal).
Los dos ángulos para el caso de Eratóstenes son:
Siena: r=0, luego sen(i)=0, luego i=0, es decir, en el cénit NO existe la refracción, cosa que ya sabíamos.
Alejandría: r=7.2º, luego sen(i)=1.00029*sen(7.2)=0.1253696, luego i=7.202, es decir la diferencia de ambos ángulos es de sólo 0.002º=7.5", y Eratóstenes no tenía instrumentos para medir semejante ángulo, ni afecta sensiblemente al resultado, el radio es prácticamente el mismo poniendo 7.2º o 7.202º.
Resumiendo, no, la refracción no puede justificar de ninguna manera que la diferencia en la altura del Sol entre ambas localidades fuese de 7.2º, la única justificación posible es que los horizontes respecto a los que se miden los ángulos son diferentes, es decir, que la Tierra se curva (*).
Y de todos modos, eso es algo que cualquier persona con un mínimo de raciocinio debería ver, el Sol (o mejor la Luna, para evitar tener que usar filtros para evitar la sobreexposición) se ve circular en casi todo su recorrido por encima del horizonte, sólo se ve ligeramente achatado cuando está muy cerca del horizonte, es decir, la refracción sólo es relevante cuando el objeto al que miramos está muy cerca del horizonte, y eso se puede saber sin hacer ningún cálculo, sólo se precisa observar a qué altura sobre el horizonte el Sol empieza a verse achatado.
Y ya para rematar, el hecho de que se vea achatado prueba que en efecto la refracción eleva los objetos, tampoco necesitamos la ley de Snell para observar eso.
(*) La otra justificación terraplanista: "es que el Sol está muy cerca", tampoco se sostiene, en primer lugar porque el Sol debería variar notablemente de tamaño en su recorrido, y no lo hace, y en segundo lugar, porque para justificar que en 800 km la bajada del Sol sea de 7.2º (lo medido por Eratóstenes), nos da que la altura del Sol debería ser de más de 5000 km, y con semejante altura, cuando estuvieramos a 20000 km del punto en el que el Sol está en el cénit, la altura (sin refracción) a la que deberíamos ver el Sol sería de atan(5000/20000)=14º, y a 14º la refracción apenas afecta (y además elevaría el Sol, en lugar de bajarlo), como acabamos de ver, luego las puestas de Sol no existirían de ser la Tierra plana.