[AYUDA] ¿ Puede hacerse pizza al estilo gran cadena?

la masa napolitana original no lleva levadura de cerveza lleva levadura de masa progenitora del lugar ..esta levadura napolitana tambien se vende...igual que s venden otras de masa progenitora para el pan...

Todas las pizzas llevan levadura de cerveza. Calzone, tigelle (son panecillos tipicos de Bologna) sin levadura cualquier masa quedarìa seca y dura
 
que no es levdura de cerveza ....salvo en las malas ....es masa progenitora que lleva otros tipos de lavduras del ambiente....la de cerveza es sacaromyces cerevisiae...la de las masas mdres son otras ..y ademas llevan lactobacilos que le dn el buen sabor...

los italianos que saben claro , lo llaman il criscito ..

si no sabes eso no tienes ni fruta idea de panaderia...
 
Última edición:
Il criscìto o lievito progenitora si fa in casa


Il crìscito (chiamato lievito progenitora) si può fare in casa, è un composto di acqua e farina lasciato fermentare liberamente all’aria aperta. E‘ un lievitante completamente selvaggio: ingrediente antichissimo, è il progenitore del cubetto di lievito di birra; si usa o puro o in combinazione ad altri agenti lievitanti per l’esecuzione di pani tradizionali, pizze speciali e dolci lievitati (casatiello, panettone, colomba). Può provenire o da un pezzo di un precedente criscito (così come si faceva in passato), oppure può essere “prodotto” in casa. La conservazione del criscito è possibile in acqua (metodo c.d. piemontese), oppure a temperatura ambiente (avvolto in panni o sistemato in ciotole di vetro), o ancora in frigo, o persino in congelatore o addirittura essiccato (ma conservare qualcosa di vivo in assenza d’acqua non mi convince molto..). Il mantenimento avviene con la tecnica dei “rinfreschi”: si aggiunge cioè al criscito acqua e farina, settimanalmente o comunque ogni qual volta ve lo chiede. A me personalmente lo sfizio è iniziato da quando un mio caro amico mi fece vedere questo suo “figliolo” in un boccaccio di vetro conservato al buio. Mo’ lasciamo stare quello che siamo riusciti a fare (sia io che il mio amico), però permettetemi di farvi venire la voglia anche a voi di provare a mettervi in casa questa specie di “animale domestico” illustrandovi un po’ di cosucce che ho letto, visto o sentito dire, sull’argomento. Se volete provare a iniziare ad auto-produrvelo dovete innanzi tutto decidere se farlo partire da zero o se volete aiutarvi con qualche grammo (per l’esattezza non più di una decina di granelli di lievito di birra essiccato): la seconda possibilità è però considerata, nel giro, un imbroglio, vi avverto. 1-La farina per il primo impasto (quello di partenza, un impasto-esca con cui cercherete di acchiappare i fermenti presenti nella vostra casa..) dovrebbe essere biologica, meglio se o di segale, o integrale, o anche di farro. 2-L’acqua sarà meglio quella addizionata di anidride carbonica. Intrugliate dunque acqua e farina, la pasta va lasciata morbida. 3-A questo punto potete aggiungere nell’impasto-esca uno starter rigorosamente senza pesticidi (frutta, come si fa in Basilicata; olio; miele; succo di pomoro; mai la patata! vaglielo a dire a papi..; succo d’uva; yogurt – ma quest’ultimo pare sia un errore). 4-Bene, nel vostro boccaccione di vetro ora c’è questo impasto, che fare? Innanzi tutto copritelo con un panno o un pezzo di collant. Occorre aspettare 48 ore, nella speranza che qualche fermento abbocchi, dopodiché se non s’alza occorre fondamentalmente gettare tutto via. La speranza di acchiappare qualche fermento dall’aria circostante aumenta, ovviamente, in ambienti in cui si panifica, o perlomeno in cui si cucina molto. Qualcuno addirittura vagherebbe nei boschi in primavera con questa ciotola in mano alla ricerca di acque sorgive e boschi incontaminati particolarmente ricchi (a parer suo) di spore naturali.. (già che ci sono, ***ia per ***ia, vi dico pure che in giro per il mondo sono conservati antichissimi crisciti, molti dei quali sono risalenti al 1800, tra cui non pochi viaggiarono nei valigioni di cartone insieme agli immigrati napoletani.. capisci a mmé). 'U Parlatorio. Pane cilentano Il criscito è usato in Francia (per il pane), in Inghilterra (per i muffin), in Germania (perché migliora la salubrità delle loro farine scure), negli USA (l’università di San Francisco è specializzata nel fornire ceppi di “cavallo pazzo”, come lo chiamano in slang , il criscito, ai panettieri americani). C’è in giro addirittura quello pronto per pasticcieri pigri (in sacchetti da 5kg) e addirittura alcune ditte so che stanno vendendolo nei supermercati in bustine monodose (anche in questo caso, essendo disidratato, molti intenditori storcono il naso facendogli fare quasi un giro completo). Per gli amanti della degustazione del vino, poi, è un vero sfizio annusarlo in tutte le sue fasi (di nascita, crescita, malattia, ecc.): ad un naso esperto il criscito fa esplorare tutte le sue gamme olfattive cacciando aromi fiorali (millefiori), fruttati, di feccia e feccino (cioè simil-spumante), lattici (odore di formaggio, yogurt), di aceto, di alcol e di polialcoli. Bene, parliamo di igienicità . Teniamo presente che qualsiasi esperimento facciamo (*noi principianti*) occorre non portarlo, se crudo, spensieratamente in bocca, in quanto è un prodotto contaminato da spore d’ogni tipo per sua natura (direi che il criscito è “ontologicamente” un contaminante): occorre dunque cuocere il prodotto lievitato da esso, tenendo presente che mediamente un pane viene cotto a 180° e che dunque il cuore del pane stesso viene automaticamente ad essere almeno pastorizzato. Uso. Molto bene, parliamo di come si usa. Direi fino a 1/3 in peso, rispetto alla massa da far lievitare, per un tempo di 6-8 ore (insomma ce ne vuole un sacco e impiega una vita!). La salute Veniamo a noi, stiamo parlando insomma di un vero e proprio organismo vivente (su cui le pubblicazioni scientifiche non mancano, né mancano in rete e in libreria splendide pubblicazioni divulgative) in cui su una massa di nutrienti convive simbioticamente un condominio di più miceti e più batteri. I miceti sono praticamente i cugini del Saccaromices Cerevisiae (il lievito di birra comune), i batteri dovrebbero per lo più essere quelli lattici (quelli dei probiotici, per intenderci) e quelli acetici: miceti e batteri insieme producono condizioni di vita ottimali per l’altra specie, distruggendo contaminanti patogeni. In caso di muffe (nere, rosa) o odore o sapore strano, come abbiamo detto più su, getteremo tutto via, in quanto il criscito sta morendo. Un altro caso, invece, è la malattia curabile: parliamo di criscito troppo forte o troppo acido, e viceversa: tutte cose curabili con lavaggi in acqua addolcita o con frequenti “rinfreschi”.
 
Última edición:
identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis
Christiane B. Meroth, Walter P. Hammes, and Christian Hertel*
Institute of Food Technology, University of Hohenheim, D-70599 Stuttgart, Germany
*Corresponding author. Mailing address: Institute of Food Technology, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany. Phone: 49 711 459 4255. Fax: 49 711 459 4199. E-mail: hertel@uni-hohenheim.de.
Received May 30, 2003; Accepted September 15, 2003.
This article has been cited by other articles in PMC.
Other Sections▼
Abstract
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.
Other Sections▼

Characterization of complex microbiota as they occur in food fermentation processes is facilitated by the development and application of sensitive and powerful molecular methods but is still a challenge. The microorganisms contributing to the characteristic properties of the food during the course of the fermentation process should be known in order to allow control of the process by selection of the appropriate technological condition and by using defined cultures. In a previous study, we reported the monitoring of lactic acid bacterium (LAB) population dynamics during the fermentation process in four continuously propagated sourdoughs by a LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) system (25). PCR-DGGE detects the 90 to 99% most numerous species of a community without discriminating living from dead cells or cells in a noncultivable state. The study revealed fluctuations within the LAB population, and under different ecological conditions, characteristic species prevailed. Because yeasts fulfill several important *func tion s in bread making, the knowledge of their composition is also essential (15). They contribute to leavening (38) and produce metabolites such as alcohols, esters, and carbonyl compounds which contribute to the development of the characteristic bread flavor (7, 9, 16, 20, 21). Furthermore, the enzymatic activities of yeasts by enzymes such as proteases, lecithinase, lipases, α-glucosidase, β-fructosidase, and invertase have an influence on the dough stickiness and rheology as well as on the flavor, crust tonalidad, crumb texture, and firmness of the bread (2, 6, 24). As these activities are species or even strain specific, a special interest arose to control the yeast biota by adjusting the fermentation conditions to the ecological requirements of the desired microorganisms.
In studies of the sourdough yeast microbiota, traditional cultivation methods in combination with phenotypic (physiological and biochemical) and/or genotypic (randomly amplified polymorphic DNA [RAPD]-PCR and restriction fragment length polymorphism [RFLP] analysis) identification methods have commonly been used (8, 10, 19, 28, 31). These studies focused on the characterization of ripe doughs and revealed the presence of 23 yeast species belonging especially to the genera Saccharomyces and Candida (5, 27, 32). No data are available on the competitiveness of yeasts; thus, the effects of ecological factors and process conditions on the development of yeast biota during sourdough fermentation processes are virtually unknown.
To gain insight into the role of yeasts, we monitored changes of yeast population dynamics during sourdough fermentation processes by investigating samples of four previously described sourdoughs (25). For this purpose, a fungi-specific PCR-DGGE system based on the 28S rRNA gene was established. In addition, strains of the various yeast species were isolated by culturing and were identified phenotypically and by partial 28S rRNA sequencing. Their origins were traced back to the s
 
Última edición:
Baking of sourdough breads.
At the end of fermentation, breads were baked, using the ripe sourdoughs of batches A to D. Remarkably, a perfect bread volume and crumb structure were obtained exclusively when the sourdough of batch A was used. The volumes of breads obtained with sourdoughs of batches B to D were rather small and the crumb structure was irregular. No bread leavening was obtained with the sourdough of batch C.




DISCUSSION
As observed for LAB, fluctuations occur in yeast populations during fermentation of type I and II sourdoughs (25). PCR-DGGE with the fungi-specific primers U1GC and U2 permitted us to detect the predominant yeast species, which were highly competitive under the prevailing ecological conditions. For the type I sourdough (batch A), C. humilis predominated. This observation is complementary to the previous finding that Lactobacillus sanfranciscensis and Lactobacillus mindensis became the predominant LAB during this process (25). The coexistence of C. humilis and L. sanfranciscensis is consistent with the results of studies of type I sourdoughs performed by Salovaara and Savolainen (33), Sugihara et al. (38), and Böcker et al. (4). Gänzle et al. (12) and Brandt (5) attributed this coexistence to their identical growth rates, and Stolz et al. (37) attributed it to their different sugar metabolisms. L. sanfranciscensis and C. humilis do not compete for maltose, the main carbon source in flour, as C. humilis does not catabolize maltose and ferments glucose preferably (14), whereas L. sanfranciscensis is known to efficiently metabolize maltose (37). With continuously propagated sourdough fermentations, Nout and Creemers-Molenaar (26) demonstrated that maltose-negative sourdough yeasts prevailed after a few propagation cycles against the maltose-positive baker's yeast S. cerevisiae. On the other hand, we observed that in the continuously propagated sourdough batch B (type II), a maltose-positive S. cerevisiae became dominant in coexistence with Lactobacillus crispatus and the maltose-fermenting Lactobacillus pontis (25). This S. cerevisiae strain exhibited a RAPD type identical to that of maltose-positive baker's yeast. Thus, we assume that the availability of the different sugars constitutes only a minor ecological factor in the development of the microbiota of type II sourdoughs.
The effects of ecological factors on the development of the microbiota in sourdough fermentations, including temperature, pH, and acetic and lactic acid concentration, were described by Brandt (5) and Gänzle et al. (11). We observed that fermentation under otherwise identical ecological conditions, except for temperature (batches B and C), not only affected the selection of lactobacilli (25) but also yeast counts.

In batch B (30°C), S. cerevisiae dominated (Fig. ​(Fig.3),3), whereas in batch C (40°C), all
yeast species which had been added with the starter mixture disappeared (Table ​(Table3).3). Growth studies in synthetic medium revealed that S. cerevisiae and Candida
krusei can grow at temperatures above 35°C whereas C. humilis does not
(12, 17). Furthermore, we observed that C. krusei was present in batch C until day 7 (Table ​(Table3)3) and can grow at 40°C (batch D) under the effects of different process
parameters. Therefore, in batch C other ecological factors may be responsible for the killing of the yeasts, including C. krusei. However, an approximately three times higher level of titratable acid in batch D than in batches B and C (25) did not influence the growth of C. krusei, indicating its tolerance against high concentrations of lactic and acetic acid. This conclusion is supported by the observation of Spicher and Schröder (36) that C. krusei was lesser influenced by low pH, high growth temperatures, and high concentrations of acetic and lactic acid than was S. cerevisiae.
For producing sourdough bread, sufficient formation of CO2 for dough leavening without the use of baker's yeast can be achieved only by using type I sourdough, which contains microbial constitutively active yeasts and LAB. It was shown by Gänzle et al. (11) that in type I sourdoughs, the CO2 was produced mainly by heterofermentative LAB and not, as commonly expected, by sourdough yeasts. We also observed that optimal leavening in sourdough bread was only achieved with the type I sourdough of batch A. Breads produced with the type II sourdoughs (batches B to D) did not show sufficient dough aeration, and with decreasing yeast counts a decreasing loaf volume resulted. The LAB counts were comparable in all sourdough batches, but the yeast counts differed (Fig. ​(Fig.1).1). We showed previously (25) that the
counts of heterofermentative LAB are equal in sourdough batches A (type I) and C (type II). Nevertheless, the use of sourdough batch C resulted in bread with a small loaf volume. Thus, we assume that CO2 formation in type II sourdoughs is mainly caused by yeasts. This assumption is supported by the obtained loaf volumes of breads produced with sourdough batches B and D, as yeasts and mainly homofermentative LAB species were found to predominate in these fermentations (25).
For validation of the species specificity of the PCR-DGGE system, we used 10 yeast species frequently isolated from sourdoughs. Although S. uvarum, Saccharomyces inusitatus, and Saccharomyces bayanus have been attributed to one species, namely S. bayanus (3), we could differentiate between these species, as the DGGE patterns differed. On the other hand, we were not able to distinguish between Candida milleri and C. humilis. This observation is consistent with the conclusion of Kurtzman and Robnett (18) that these species are conspecific. Remarkably, these authors also used sequences of the 28S rRNA gene as criteria for taxonomy. In contrast, Pulvirenti et al. (29) and Gullo et al. (13) considered them to be separate species, as they were able to distinguish between these species on the basis of different RFLP patterns in the intergenic spacer regions. Furthermore, we observed that S. exiguus CBS 7901, which was originally identified as C. milleri, has a DGGE pattern which is identical to that for strains of C. milleri. This result suggests that strain CBS 7901 should be identified as C. milleri. This suggestion is supported by the findings of Mäntynen et al. (19) that strain CBS 7901 is more closely related to C. milleri, as shown by 18S rDNA and EF-3 PCR-RFLP patterns. Comparison of the results of PCR-DGGE with those of traditional culturing revealed that PCR-DGGE detected not only all culturable yeasts but also additional fungi species (unculturable ascomycetous yeast, Dekkera bruxellensis, E. nigrum, and S. cerevisiae) in the rye flour and batches A to C. We cannot draw conclusions about the viability of these organisms, as the target DNA may originate from living cells in a nonculturable state or from dead cells or may be released from cells that are lysed during fermentation.
Investigation of the rye flour by using direct cloning of 28S rDNA fragments, PCR-DGGE, and culturing techniques showed that S. cerevisiae constitutes the dominant species but is present in minor counts only (Table ​(Table3;3; Fig.
​Fig.4).4). This finding was
confirmed by investigation of rye flour from two other mills (data not shown). Thus, it can be concluded that S. cerevisiae constitutes a major part of the autochthonous microbiota of rye flour. The presence of S. cerevisiae in flour does not miccionan that these strains are also competitive in dough and affect the fermentation process. This conclusion can be drawn from our observation that the three different yeast strains present in rye flour and detected by RAPD analysis were dominated by the strain added to the process as baker's yeast. This deliberately added yeast, like any organism in a starter culture, has to be compatible in its ecological requirements with the conditions prevailing in the fermentation process. Starter preparations for type I and II doughs are commonly produced in a continuous fermentation process under defined conditions. Their application may not be successful if they are used under adverse conditions, such as occur, for example, in doughs produced with unusual flours (e.g., rice flour) or at elevated temperature. Our results provide the knowledge to select suitable starter preparations for specific sourdough fermentations that can control the process, and vice versa, to obtain a desired bread quality by adjusting the fermentation process parameters to the growth requirements of the suitable microorganisms.



o sea que esto es un mundo el bouquet que dan los distintos tipos de microorganismos es comparable a los bouquets de los vinos y hay muchos sabores de masa progenitora y por tanto de pizzas , el de la levdura de cerveza coriente no es el mejor desde luego
 
Última edición:
buenas de nuevo. ME parece que existen muchos tecnicismo para los profanos.

¿Por favor nos darías los pasos exactos y cantidades exactas para hacer la masa progenitora?

un saludo y gracias
 
la masa progenitora es una pejiguera describirla y hacerla ...en este subforo hay ya un hilo muy bueno....luego hay variaciones ...

y ojo que si se te contmina puede ser toxica...

pero te advierto que hacerla , mantenerla usarla no es ideal ..solo merece la pena por el sabor ...



http://www.burbuja.info/inmobiliari...2-hazlo-tu-mismo-pan-de-masa-progenitora.html
 
Última edición:
la masa progenitora es una pejiguera describirla y hacerla ...en este subforo hay ya un hilo muy bueno....luego hay variaciones ...

y ojo que si se te contmina puede ser toxica...

pero te advierto que hacerla , mantenerla usarla no es ideal ..solo merece la pena por el sabor ...



http://www.burbuja.info/inmobiliari...2-hazlo-tu-mismo-pan-de-masa-progenitora.html

Si no me equivoco la temperatura actual es la mejor para iniciar una masa progenitora (20-22º) . ¿Correcto?
 
desde entonces...he meditado mucho...

Me ratifico en que la pizza que indique en este hilo sale muy buena, pero mi curiosidad e inquietud me han hecho experimentar....

-levaduras quimicas : bicarbonatos, etc..(gasificantes puros y duros..tipo levadura royal) el reposo no potencia mucho su efecto, mas o menos como el efecto de la cerveza...., ni combinando se obtrniene esponjosidad..

-microorganismos: primero prove con el asesoramento de la wiki, con ultralevura de mi cria (levaduras para la flora intestinal cuando se toman antibioticos..), poca cosa y necesario mucho reposo.
 
Yo hago pizza casera todas las semanas.

Me sale genial, esta buenisima y es insuperable pero si el hilo trata de hacer una pizza al estilo de una gran cadena, he de reconocer que soy incapaz de copiar semejante cosa de pizza.
 
Pizzas, con la masa hecha en casa, ni punto de comparacion.

Si tengo tiempo y ganas, hago la masa a mano (derequetechupete).

Si no, a veces tengo alguna masa de esas precongeladas (de la sirena y sitios asi), la dejas descongelar unas horas antes, tapada con un trapo y a amasar.
 
Volver