Diminutos robots controlados por campos magnéticos podrían revolucionar la biomedicina • Tendencias21
Nuevos robots milimétricos pueden controlarse mediante campos magnéticos: son capaces de realizar manipulaciones altamente complejas y podrían servir para nuevos desarrollos en biomedicina, incluyendo dispositivos que deban insertarse en el cuerpo humano.
tendencias21.levante-emv.com
Investigadores de la Universidad Tecnológica de Nanyang, en Singapur (NTU Singapur) han creado una serie de robots milimétricos que logran efectuar movimientos y manipulaciones de alta complejidad. Se gestionan a través de campos magnéticos: con el tamaño de un grano de arroz, podrían llegar a sitios hoy inaccesibles de nuestro cuerpo y facilitar importantes desarrollos en biomedicina.
De acuerdo a una nota de prensa, los movimientos de los robots pueden ser controlados de forma remota por un operador. Para ello se emplea un programa que se ejecuta en un ordenador de control, variando con precisión la fuerza y la dirección de los campos magnéticos, generados a su vez por un sistema de bobina electromagnética.
Las habilidades de estos robots permitirán que en un futuro cercano puedan inspirar procedimientos quirúrgicos novedosos, por ejemplo en órganos vitales a los que resulta más complejo acceder, como en el caso del cerebro.
Con ese propósito, los científicos están buscando que los dispositivos sean todavía más pequeños: planean llevarlos a unos pocos cientos de micrómetros. En el mismo sentido, intentarán lograr que sean completamente autónomos en términos de control.
El dominio de la física
En el estudio que derivó en esta aplicación tecnológica, recientemente publicado en la revista Advanced Materials, los investigadores explicaron por qué consideran que la innovación desarrollada puede tras*formarse en un avance significativo para las tecnologías robóticas a pequeña escala.
Gracias a un profundo entendimiento de la física de estos robots en miniatura, los especialistas lograron controlar con precisión sus movimientos, en un nivel de detalle y complejidad que no se observa en otros desarrollos.
Aunque el campo de los robots miniaturizados se encuentra en pleno auge, y existen muchos dispositivos similares con aplicación en el campo de la biomedicina, los expertos asiáticos explicaron que los avances conseguidos ubican a esta tecnología a la vanguardia en su área.
La destreza y la velocidad de estos robots en miniatura quedaron demostradas en experimentos realizados por los científicos. Por ejemplo, un dispositivo bioinspirado en una medusa fue capaz de nadar rápidamente por un estrecho canal, superando a su vez distintas barreras y escollos.
En consecuencia, lograron verificar que los robots son capaces de afrontar desafíos en entornos inciertos. Dicha condición puede ser crucial si se piensa en su aplicación en el campo de la biomedicina, ya que deberán sortear problemas y desafíos similares. ¿Cómo logran estos robots ampliar su gama de movimientos y la precisión de los mismos?
Tema relacionado: Robots sensibles como auxiliares de salud.
Destreza, velocidad y ductilidad
Los datos son contundentes: en comparación con una gama de robots miniaturizados desarrollada previamente, los nuevos dispositivos pueden rotar 43 veces más rápido su cuerpo en ciertos movimientos. En las dinámicas más complejas, registraron una velocidad de rotación de 173 grados por segundo.
Además, al ser fabricados con materiales blandos son capaces de llevar adelante tareas con suma precisión y ductilidad, como recoger y colocar objetos de todo tipo. Por ejemplo, un robot en forma de pinza pudo ensamblar una estructura 3D compuesta de numerosas piezas en pocos minutos.
Los nuevos robots se crearon a partir de polímeros biocompatibles, que no insumen ningún riesgo de toxicidad. Al mismo tiempo, los polímeros incluyen incrustaciones de micropartículas magnéticas, que hacen posible el mecanismo de control mediante campos magnéticos.
Referencia
Small-Scale Magnetic Actuators with Optimal Six Degrees-of-Freedom. Changyu Xu, Zilin Yang and Guo Zhan Lum. Advanced Materials (2021).DOI:https://doi.org/10.1002/adma.202100170
Video: NTUsg en YouTube.
Foto: los robots milimétricos miden aproximadamente el tamaño de un grano de arroz y se pueden controlar mediante campos magnéticos. Podrían tener múltiples aplicaciones en el terreno de la biomedicina, por ejemplo en intervenciones quirúrgicas complejas. Crédito: NTU Singapur.
De acuerdo a una nota de prensa, los movimientos de los robots pueden ser controlados de forma remota por un operador. Para ello se emplea un programa que se ejecuta en un ordenador de control, variando con precisión la fuerza y la dirección de los campos magnéticos, generados a su vez por un sistema de bobina electromagnética.
Las habilidades de estos robots permitirán que en un futuro cercano puedan inspirar procedimientos quirúrgicos novedosos, por ejemplo en órganos vitales a los que resulta más complejo acceder, como en el caso del cerebro.
Con ese propósito, los científicos están buscando que los dispositivos sean todavía más pequeños: planean llevarlos a unos pocos cientos de micrómetros. En el mismo sentido, intentarán lograr que sean completamente autónomos en términos de control.
El dominio de la física
En el estudio que derivó en esta aplicación tecnológica, recientemente publicado en la revista Advanced Materials, los investigadores explicaron por qué consideran que la innovación desarrollada puede tras*formarse en un avance significativo para las tecnologías robóticas a pequeña escala.
Gracias a un profundo entendimiento de la física de estos robots en miniatura, los especialistas lograron controlar con precisión sus movimientos, en un nivel de detalle y complejidad que no se observa en otros desarrollos.
Aunque el campo de los robots miniaturizados se encuentra en pleno auge, y existen muchos dispositivos similares con aplicación en el campo de la biomedicina, los expertos asiáticos explicaron que los avances conseguidos ubican a esta tecnología a la vanguardia en su área.
La destreza y la velocidad de estos robots en miniatura quedaron demostradas en experimentos realizados por los científicos. Por ejemplo, un dispositivo bioinspirado en una medusa fue capaz de nadar rápidamente por un estrecho canal, superando a su vez distintas barreras y escollos.
En consecuencia, lograron verificar que los robots son capaces de afrontar desafíos en entornos inciertos. Dicha condición puede ser crucial si se piensa en su aplicación en el campo de la biomedicina, ya que deberán sortear problemas y desafíos similares. ¿Cómo logran estos robots ampliar su gama de movimientos y la precisión de los mismos?
Tema relacionado: Robots sensibles como auxiliares de salud.
Destreza, velocidad y ductilidad
Los datos son contundentes: en comparación con una gama de robots miniaturizados desarrollada previamente, los nuevos dispositivos pueden rotar 43 veces más rápido su cuerpo en ciertos movimientos. En las dinámicas más complejas, registraron una velocidad de rotación de 173 grados por segundo.
Además, al ser fabricados con materiales blandos son capaces de llevar adelante tareas con suma precisión y ductilidad, como recoger y colocar objetos de todo tipo. Por ejemplo, un robot en forma de pinza pudo ensamblar una estructura 3D compuesta de numerosas piezas en pocos minutos.
Los nuevos robots se crearon a partir de polímeros biocompatibles, que no insumen ningún riesgo de toxicidad. Al mismo tiempo, los polímeros incluyen incrustaciones de micropartículas magnéticas, que hacen posible el mecanismo de control mediante campos magnéticos.
Referencia
Small-Scale Magnetic Actuators with Optimal Six Degrees-of-Freedom. Changyu Xu, Zilin Yang and Guo Zhan Lum. Advanced Materials (2021).DOI:https://doi.org/10.1002/adma.202100170
Video: NTUsg en YouTube.
Foto: los robots milimétricos miden aproximadamente el tamaño de un grano de arroz y se pueden controlar mediante campos magnéticos. Podrían tener múltiples aplicaciones en el terreno de la biomedicina, por ejemplo en intervenciones quirúrgicas complejas. Crédito: NTU Singapur.
Físicos, cerca de alcanzar estado cuántico básico en objeto – DW – 18/06/2021
"Nadie ha observado nunca cómo actúa la gravedad sobre los estados cuánticos masivos": los resultados abren la posibilidad de estudiar los efectos de la gravedad en objetos relativamente grandes en estados cuánticos.
amp.dw.com
"Nadie ha observado nunca cómo actúa la gravedad sobre los estados cuánticos masivos": los resultados abren la posibilidad de estudiar los efectos de la gravedad en objetos relativamente grandes en estados cuánticos.
El universo, visto a través de la lente de la mecánica cuántica, es un espacio ruidoso en el que las partículas entran y salen constantemente. Mientras que, bajo nuestro lente, el ojo humano, la mayoría de los objetos inmóviles parecen ser eso: inmóviles y completamente en reposo.
Es muy raro que algo esté completamente quieto. Toda la materia normal del Universo está formada por partículas que zumban, vibrando a sus propias frecuencias.
En las últimas décadas, los físicos han encontrado formas de sobreenfriar los objetos para que sus átomos se encuentren casi inmóviles, o en su "estado básico de movimiento". En este estado, los físicos pueden realizar pruebas de mecánica cuántica y gravedad cuántica, sondeando la frontera con la física clásica para buscar una forma de unificar ambas.
Nueva forma de sondear el reino cuántico
Hasta la fecha, los físicos han conseguido que objetos pequeños, como nubes de millones de átomos u objetos a escala nanométrica, se encuentren en estos estados cuánticos puros.
Pero ahora, por primera vez, se ha hecho con un "objeto" masivo: los movimientos colectivos de los cuatro espejos del interferómetro de ondas gravitacionales LIGO, conocido como oscilador optomecánico, con una masa efectiva de 10 kilogramos (22 libras). El trabajo, cuyos resultados fueron publicados en Science, representa una nueva forma de sondear el reino cuántico.
"Nadie ha observado nunca cómo actúa la gravedad sobre los estados cuánticos masivos", afirma el ingeniero mecánico Vivishek Sudhir, del Instituto de Tecnología de Massachusetts (MIT), que dirigió el proyecto. "Hemos demostrado cómo preparar objetos a escala de un kilogramo en estados cuánticos. Esto abre por fin la puerta a un estudio experimental de cómo la gravedad podría afectar a los grandes objetos cuánticos, algo que hasta ahora solo se había soñado", agregó.
Enfriar el átomo aplicando la cantidad justa de fuerza
Alcanzar el estado básico cuántico de una nube de átomos no es fácil. Según reporta ScienceAlert, hay que enfriar el átomo aplicando la cantidad justa de fuerza para detener sus vibraciones; si no se enfría lo suficiente, solo se ralentiza.
Esto se llama "enfriamiento por retroalimentación", y en la nanoescala es más sencillo de hacer, porque es más fácil aislar los grupos más pequeños de átomos y minimizar las interferencias. Sin embargo, cuanto más grande sea, más difícil será manejar esa interferencia, según el medio científico.
Observatorio de ondas Gravitatorias por Interferometría Láser (LIGO)
Para poder lograr la hazaña de alta precisión, los científicos recurrieron al Observatorio de ondas Gravitatorias por Interferometría Láser (LIGO), el cual está diseñado para detectar diminutas ondulaciones en el espacio-tiempo generadas por colisiones entre objetos masivos situados a miles de millones de años luz.
Según el comunicado de prensa de MIT, LIGO está formado por dos interferómetros situados en distintos lugares de Estados Unidos. Cada interferómetro tiene dos largos túneles conectados en forma de L, que se extienden 4 kilómetros en cada dirección. En cada extremo de cada túnel hay un espejo de 40 kilos suspendido por finas fibras, que se balancea como un péndulo en respuesta a cualquier perturbación, como una onda gravitacional entrante.
Un láser situado en el nexo de los túneles se divide y se envía a cada uno de ellos, y luego se refleja de vuelta a su fuente. El tiempo de los láseres de retorno indica a los científicos con precisión cuánto se ha movido cada espejo, con una exactitud de 1/10.000 del ancho de un protón.
"LIGO está diseñado para medir el movimiento conjunto de los cuatro espejos de 40 kilogramos", dijo Sudhir. "Resulta que se puede mapear matemáticamente el movimiento conjunto de estas masas, y pensar en ellas como el movimiento de un único objeto de 10 kilogramos".
Calcular la tasa de enfriamiento por retroalimentación
Midiendo con precisión el movimiento de este oscilador, el equipo esperaba calcular exactamente la tasa de enfriamiento por retroalimentación necesaria para inducir el estado básico de movimiento. No obstante, el propio acto de medir introduce un grado de aleatoriedad en la ecuación, lo que dificulta la predicción.
Para corregir esto, el equipo estudió cada fotón para estimar la actividad de las colisiones anteriores, construyendo continuamente un mapa más preciso de cómo aplicar las fuerzas correctas y lograr el enfriamiento.
El efecto hizo que el movimiento colectivo se paralizara prácticamente, dejando a los espejos con tan poca energía que no se movieron más de 10-20 metros, menos de una milésima parte del tamaño de un protón, según el comunicado.
A continuación, el equipo equiparó la energía restante del objeto, o el movimiento, con la temperatura, y descubrió que el objeto se encontraba a 77 nanokelvins, muy cerca de su estado básico de movimiento, que predicen que es de 10 nanokelvins.
"Preparar algo en el estado básico es a menudo el primer paso para ponerlo en estados cuánticos emocionantes o exóticos", dice Whittle. "Así que este trabajo es emocionante porque podría permitirnos estudiar algunos de estos otros estados, a una escala masiva que nunca se ha hecho antes".
El universo, visto a través de la lente de la mecánica cuántica, es un espacio ruidoso en el que las partículas entran y salen constantemente. Mientras que, bajo nuestro lente, el ojo humano, la mayoría de los objetos inmóviles parecen ser eso: inmóviles y completamente en reposo.
Es muy raro que algo esté completamente quieto. Toda la materia normal del Universo está formada por partículas que zumban, vibrando a sus propias frecuencias.
En las últimas décadas, los físicos han encontrado formas de sobreenfriar los objetos para que sus átomos se encuentren casi inmóviles, o en su "estado básico de movimiento". En este estado, los físicos pueden realizar pruebas de mecánica cuántica y gravedad cuántica, sondeando la frontera con la física clásica para buscar una forma de unificar ambas.
Nueva forma de sondear el reino cuántico
Hasta la fecha, los físicos han conseguido que objetos pequeños, como nubes de millones de átomos u objetos a escala nanométrica, se encuentren en estos estados cuánticos puros.
Pero ahora, por primera vez, se ha hecho con un "objeto" masivo: los movimientos colectivos de los cuatro espejos del interferómetro de ondas gravitacionales LIGO, conocido como oscilador optomecánico, con una masa efectiva de 10 kilogramos (22 libras). El trabajo, cuyos resultados fueron publicados en Science, representa una nueva forma de sondear el reino cuántico.
"Nadie ha observado nunca cómo actúa la gravedad sobre los estados cuánticos masivos", afirma el ingeniero mecánico Vivishek Sudhir, del Instituto de Tecnología de Massachusetts (MIT), que dirigió el proyecto. "Hemos demostrado cómo preparar objetos a escala de un kilogramo en estados cuánticos. Esto abre por fin la puerta a un estudio experimental de cómo la gravedad podría afectar a los grandes objetos cuánticos, algo que hasta ahora solo se había soñado", agregó.
Enfriar el átomo aplicando la cantidad justa de fuerza
Alcanzar el estado básico cuántico de una nube de átomos no es fácil. Según reporta ScienceAlert, hay que enfriar el átomo aplicando la cantidad justa de fuerza para detener sus vibraciones; si no se enfría lo suficiente, solo se ralentiza.
Esto se llama "enfriamiento por retroalimentación", y en la nanoescala es más sencillo de hacer, porque es más fácil aislar los grupos más pequeños de átomos y minimizar las interferencias. Sin embargo, cuanto más grande sea, más difícil será manejar esa interferencia, según el medio científico.
Observatorio de ondas Gravitatorias por Interferometría Láser (LIGO)
Para poder lograr la hazaña de alta precisión, los científicos recurrieron al Observatorio de ondas Gravitatorias por Interferometría Láser (LIGO), el cual está diseñado para detectar diminutas ondulaciones en el espacio-tiempo generadas por colisiones entre objetos masivos situados a miles de millones de años luz.
Según el comunicado de prensa de MIT, LIGO está formado por dos interferómetros situados en distintos lugares de Estados Unidos. Cada interferómetro tiene dos largos túneles conectados en forma de L, que se extienden 4 kilómetros en cada dirección. En cada extremo de cada túnel hay un espejo de 40 kilos suspendido por finas fibras, que se balancea como un péndulo en respuesta a cualquier perturbación, como una onda gravitacional entrante.
Un láser situado en el nexo de los túneles se divide y se envía a cada uno de ellos, y luego se refleja de vuelta a su fuente. El tiempo de los láseres de retorno indica a los científicos con precisión cuánto se ha movido cada espejo, con una exactitud de 1/10.000 del ancho de un protón.
"LIGO está diseñado para medir el movimiento conjunto de los cuatro espejos de 40 kilogramos", dijo Sudhir. "Resulta que se puede mapear matemáticamente el movimiento conjunto de estas masas, y pensar en ellas como el movimiento de un único objeto de 10 kilogramos".
Calcular la tasa de enfriamiento por retroalimentación
Midiendo con precisión el movimiento de este oscilador, el equipo esperaba calcular exactamente la tasa de enfriamiento por retroalimentación necesaria para inducir el estado básico de movimiento. No obstante, el propio acto de medir introduce un grado de aleatoriedad en la ecuación, lo que dificulta la predicción.
Para corregir esto, el equipo estudió cada fotón para estimar la actividad de las colisiones anteriores, construyendo continuamente un mapa más preciso de cómo aplicar las fuerzas correctas y lograr el enfriamiento.
El efecto hizo que el movimiento colectivo se paralizara prácticamente, dejando a los espejos con tan poca energía que no se movieron más de 10-20 metros, menos de una milésima parte del tamaño de un protón, según el comunicado.
A continuación, el equipo equiparó la energía restante del objeto, o el movimiento, con la temperatura, y descubrió que el objeto se encontraba a 77 nanokelvins, muy cerca de su estado básico de movimiento, que predicen que es de 10 nanokelvins.
"Preparar algo en el estado básico es a menudo el primer paso para ponerlo en estados cuánticos emocionantes o exóticos", dice Whittle. "Así que este trabajo es emocionante porque podría permitirnos estudiar algunos de estos otros estados, a una escala masiva que nunca se ha hecho antes".
Alemania: un computador cuántico puede cambiar la industria – DW – 16/06/2021
Pese a su fama de potencia industrial y de investigación, Alemania se ha quedado atrás en el campo de la computación cuántica. Ahora, la unión de empresas y académicos podría dar un giro a esta situación.
m.dw.com
Presenta IBM su computadora cuántica instalada en Alemania – DW – 15/06/2021
Se trata de la primera computadora cuántica instalada fuera de Estados Unidos. Su uso abre posibilidades aún insospechadas al mundo de la ciencia.
m.dw.com
Última edición: