Ramanujan (indio brahman), por mencionar a alguno no citado hasta ahora, y porque me gusta la teoría de números. Fue autodidacta.
Hablad de sus vidas o contad anécdotas o algo, si no el hilo este no vale pa naaa.
El hilo vale aunque no se haga lo que quieres. Pero pondré algunas anécdotas:
Una vez, en un taxi (en inglés taxicab) de Londres, a Hardy le llamó la atención su número, 1729. Debió de estar pensando en ello porque entró en la habitación del hospital en donde estaba Ramanujan tumbado en la cama y, con un "hola" seco, expresó su desilusión acerca de este número. Era, según él, un número aburrido, agregando que esperaba que no fuese un mal presagio. No, Hardy, dijo Ramanujan,
"es un número muy interesante. Es el número más pequeño expresable como la suma de dos cubos positivos de dos formas diferentes".
Hardy, a continuación, le preguntó si conocía la respuesta para las cuartas potencias. Ramanujan contestó, tras pensarlo un momento, que no podía ver la respuesta, pero que pensaba que debía ser un número extremadamente grande. De hecho, la respuesta, obtenida mediante cálculos con ordenador, es 635.318.657 = 134^4 + 133^4 = 158^4 + 59^4
De una generalización de esta propiedad surgen los llamados números Taxicab."
Ramanujan en 1912 fue animado a comunicar sus resultados a tres distinguidos matemáticos. Dos de ellos no le respondieron, pero sí lo hizo Godfrey Harold Hardy, de Cambridge. Hardy estuvo a punto de tirar la carta, pero la misma noche que la recibió se sentó con su amigo John Edensor Littlewood a descifrar la lista de 120 fórmulas y teoremas de Ramanujan. Horas más tarde creían estar ante la obra de un genio. Hardy tenía su propia escala de valoración para el genio matemático: 100 para Ramanujan, 80 para David Hilbert, 30 para Littlewood y 25 para sí mismo. Algunas de las fórmulas de Ramanujan le desbordaron, pero escribió
"...forzoso es que fueran verdaderas, porque de no serlo, nadie habría tenido la imaginación necesaria para inventarlas".
Hardy escribió de Rāmānujan:
"Los límites de sus conocimientos eran sorprendentes como su profundidad. Era un hombre capaz de resolver ecuaciones modulares y teoremas ...de un modo jamás visto antes, su dominio de las fracciones continuas era...superior a la de todo otro matemático del mundo; ha encontrado por sí solo la ecuación funcional de la función zeta y los términos más importantes de la teoría analítica de los números; sin embargo no había oído hablar jamás de una función doblemente periódica o del Teorema de Cauchy y poseía una vaga idea de lo que era una función de variable compleja..."