Nar--
Madmaxista
- Desde
- 20 May 2009
- Mensajes
- 3.364
- Reputación
- 4.473
Method and apparatus for altering a region in the earth's atmosphere, ionosphere, and/or magnetosphere
Con el traductor google. http://tras*late.google.es/tras*lat...,+ionosphere,+and/or+magnetosphere&hl=es&sa=G
Method and apparatus for altering a region in the earth's atmosphere, ionosphere, and/or magnetosphere United States Patent 4686605
Inventors:Eastlund, Bernard J. (Spring, TX)
Application Number:06/690333 Publication Date:08/11/1987 Filing Date:01/10/1985 Export Citation:Click for automatic bibliography generation Assignee:APTI, Inc. (Los Angeles, CA)
Primary Class:361/231 Other Classes:380/59, 244/158.100, 89/1.110 International Classes:F41G7/22; F41H13/00; H01Q1/36; H05H1/18; F41G7/20; H05H1/02; H05C3/00; H05B6/64; H05H1/46 Field of Search:361/230, 361/231, 244/158R, 376/100, 89/1.11, 380/59
Other References:Liberty Magazine, (2/35) p. 7 N. Tesla.
New York Times (9/22/40) Section 2, p. 7 W. L. Laurence.
New York Times (12/8/15) p. 8 Col. 3.
Primary Examiner:Cangialosi, Salvatore Attorney, Agent or Firm:Macdonald, Roderick W.
Claims:I claim:
1. A method for altering at least one region normally existing above the earth's surface with electromagnetic radiation using naturally-occurring and diverging magnetic field lines of the earth comprising tras*mitting first electromagnetic radiation at a frequency between 20 and 7200 kHz from the earth's surface, said tras*mitting being conducted essentially at the outset of tras*mission substantially parallel to and along at least one of said field lines, adjusting the frequency of said first radiation to a value which will excite electron cyclotron resonance at an initial elevation at least 50 km above the earth's surface, whereby in the region in which said electron cyclotron resonance takes place heating, further ionization, and movement of both charged and neutral particles is effected, said cyclotron resonance excitation of said region is continued until the electron concentration of said region reaches a value of at least 106 per cubic centimeter and has an ion energy of at least 2 ev.
2. The method of claim 1 including the step of providing artificial particles in said at least one region which are excited by said electron cyclotron resonance.
3. The method of claim 2 wherein said artificial particles are provided by injecting same into said at least one region from an orbiting satellite.
1. Technical Field
This invention relates to a method and apparatus for altering at least one selected region normally existing above the earth's surface and more particularly relates to a method and apparatus for altering said at least one region by initially tras*mitting electromagnetic radiation from the earth's surface essentially parallel to and along naturally-occurring, divergent magnetic field lines which extend from the earth's surface through the region or regions to be altered.
2. Background Art
In the late 1950's, it was discovered that naturally-occuring belts exist at high altitudes above the earth's surface, and it is now established that these belts result from charged electrons and ions becoming trapped along the magnetic lines of force (field lines) of the earth's essentially dipole magnetic field. The trapped electrons and ions are confined along the field lines between two magnetic mirrors which exist at spaced apart points along those field lines. The trapped electrons and ions move in helical paths around their particular field lines and "bounce" back and forth between the magnetic mirrors. These trapped electrons and ions can oscillate along the field lines for long periods of time.
In the past several years, substantial effort has been made to understand and explain the phenomena involved in belts of trapped electrons and ions, and to explore possible ways to control and use these phenomena for beneficial purposes. For example, in the late 1950's and early 1960's both the United States and U.S.S.R. detonated a series of nuclear devices of various yields to generate large numbers of charged particles at various altitudes, e.g., 200 kilometers (km) or greater. This was done in order to establish and study artifical belts of trapped electrons and ions. These experiments established that at least some of the extraneous electrons and ions from the detonated devices did become trapped along field lines in the earth's magnetosphere to form artificial belts which were stable for prolonged periods of time. For a discussion of these experiments see "The Radiation Belt and Magnetosphere", W. N. Hess, Blaisdell Publishing Co., 1968, pps. 155 et sec.
Other proposals which have been advanced for altering existing belts of trapped electrons and ions and/or establishing similar artificial belts include injecting charged particles from a satellite carrying a payload of radioactive beta-decay material or alpha emitters; and injecting charged particles from a satellite-borne electron accelerator. Still another approach is described in U.S. Pat. No. 4,042,196 wherein a low energy ionized gas, e.g., hydrogen, is released from a synchronous orbiting satellite near the apex of a radiation belt which is naturally-occurring in the earth's magnetosphere to produce a substantial increase in energetic particle precipitation and, under certain conditions, produce a limit in the number of particles that can be stably trapped. This precipitation effect arises from an enhancement of the whistler-mode and ion-cyclotron mode interactions that result from the ionized gas or "cold plasma" injection.
It has also been proposed to release large clouds of barium in the magnetosphere so that photoionization will increase the cold plasma density, thereby producing electron precipitation through enhanced whistler-mode interactions.
However, in all of the above-mentioned approaches, the mechanisms involved in triggering the change in the trapped particle phenomena must be actually positioned within the affected zone, e.g., the magnetosphere, before they can be actuated to effect the desired change.
The earth's ionosphere is not considered to be a "trapped" belt since there are few trapped particles therein. The term "trapped" herein refers to situations where the force of gravity on the trapped particles is balanced by magnetic forces rather than hydrostatic or collisional forces. The charged electrons and ions in the ionosphere also ***ow helical paths around magnetic field lines within the ionosphere but are not trapped between mirrors, as in the case of the trapped belts in the magnetosphere, since the gravitational force on the particles is balanced by collisional or hydrostatic forces.
In recent years, a number of experiments have actually been carried out to modify the ionosphere in some controlled manner to investigate the possibility of a beneficial result. For detailed discussions of these operations see the ***owing papers: (1) Ionospheric Modification Theory; G. Meltz and F. W. Perkins; (2) The Platteville High Power Facility; Carrol et al.; (3) Arecibo Heating Experiments; W. E. relleniton and H. C. Carlson, Jr.; and (4) Ionospheric Heating by Powerful Radio Waves; Meltz et al., all published in Radio Science, Vol. 9, No. 11, November, 1974, at pages 885-888; 889-894; 1041-1047; and 1049-1063, respectively, all of which are incorporated herein by reference. In such experiments, certain regions of the ionosphere are heated to change the electron density and temperature within these regions. This is accomplished by tras*mitting from earth-based antennae high frequency electromagnetic radiation at a substantial angle to, not parallel to, the ionosphere's magnetic field to heat the ionospheric particles primarily by ohmic heating. The electron temperature of the ionosphere has been raised by hundreds of degrees in these experiments, and electrons with several electron volts of energy have been produced in numbers sufficient to enhance airglow. Electron concentrations have been reduced by a few percent, due to expansion of the plasma as a result of increased temperature.
In the Elmo Bumpy Torus (EBT), a controlled fusion device at the Oak Ridge National Laboratory, all heating is provided by microwaves at the electron cyclotron resonance interaction. A ring of hot electrons is formed at the earth's surface in the magnetic mirror by a combination of electron cyclotron resonance and stochastic heating. In the EBT, the ring electrons are produced with an average "temperature" of 250 kilo electron volts or kev (2.5×10 9 K) and a plasma beta between 0.1 and 0.4; see, "A Theoretical Study of Electron--Cyclotron Absorption in Elmo Bumpy Torus", Batchelor and Goldfinger, Nuclear Fusion, Vol. 20, No. 4 (1980) pps. 403-418.
Electron cyclotron resonance heating has been used in experiments on the earth's surface to produce and accelerate plasmas in a diverging magnetic field. Kosmahl et al. showed that power was tras*ferred from the electromagnetic waves and that a fully ionized plasma was accelerated with a divergence angle of roughly 13 degrees. Optimum neutral gas density was 1.7×10 14 per cubic centimeter; see, "Plasma Acceleration with Microwaves Near Cyclotron Resonance", Kosmahl et al., Journal of Applied Physics, Vol. 38, No. 12, Nov., 1967, pps. 4576-4582.
DISCLOSURE OF THE INVENTION
The present invention provides a method and apparatus for altering at least one selected region which normally exists above the earth's surface. The region is excited by electron cyclotron resonance heating of electrons which are already present and/or artifically created in the region to thereby increase the charged particle energy and ultimately the density of the region.
In one embodiment this is done by tras*mitting circularly polarized electromagnetic radiation from the earth's surface at or near the location where a naturally-occurring dipole magnetic field (force) line intersects the earth's surface. Right hand circular polarization is used in the northern hemisphere and left hand circular polarization is used in the southern hemisphere. The radiation is deliberately tras*mitted at the outset in a direction substantially parallel to and along a field line which extends upwardly through the region to be altered. The radiation is tras*mitted at a frequency which is based on the gyrofrequency of the charged particles and which, when applied to the at least one region, excites electron cyclotron resonance within the region or regions to heat and accelerate the charged particles in their respective helical paths around and along the field line. Sufficient energy is employed to cause ionization of neutral particles (molecules of oxygen, nitrogen and the like, particulates, etc.) which then become a part of the region thereby increasing the charged particle density of the region. This effect can further be enhanced by providing artificial particles, e.g., electrons, ions, etc., directly into the region to be affected from a rocket, satellite, or the like to supplement the particles in the naturally-occurring plasma. These artificial particles are also ionized by the tras*mitted electromagnetic radiation thereby increasing charged particle density of the resulting plasma in the region.
In another embodiment of the invention, electron cyclotron resonance heating is carried out in the selected region or regions at sufficient power levels to allow a plasma present in the region to generate a mirror force which forces the charged electrons of the altered plasma upward along the force line to an altitude which is higher than the original altitude. In this case the relevant mirror points are at the base of the altered region or regions. The charged electrons drag ions with them as well as other particles that may be present. Sufficient power, e.g., 10 15 joules, can be applied so that the altered plasma can be trapped on the field line between mirror points and will oscillate in space for prolonged periods of time. By this embodiment, a plume of altered plasma can be established at selected locations for communication modification or other purposes.
In another embodiment, this invention is used to alter at least one selected region of plasma in the ionosphere to establish a defined layer of plasma having an increased charged particle density. Once this layer is established, and while maintaining the tras*mission of the main beam of circularly polarized electromagnetic radiation, the main beam is modulated and/or at least one second different, modulated electromagnetic radiation beam is tras*mitted from at least one separate source at a different frequency which will be absorbed in the plasma layer. The amplitude of the frequency of the main beam and/or the second beam or beams is modulated in resonance with at least one known oscillation mode in the selected region or regions to excite the known oscillation mode to propagate a known frequency wave or waves throughout the ionosphere.
...
The generation of electricity by motion of a conducting fluid through a magnetic field, i.e., magnetohydrodynamics (MHD), provides a method of electric power generation without moving mechanical parts and when the conducting fluid is a plasma formed by combustion of a fuel such as natural gas, an idealized combination of apparatus is realized since the very clean-burning natural gas forms the conducting plasma in an efficient manner and the thus formed plasma, when passed through a magnetic field, generates electricity in a very efficient manner. Thus, the use of fuel source 42 to generate a plasma by combustion thereof for the generation of electricity essentially at the site of occurrence of the fuel source is unique and ideal when high power levels are required and desirable field lines 11 intersect the earth's surface 40 at or near the site of fuel source 42. A particular advantage for MHD generators is that they can be made to generate large amounts of power with a small volume, light weight device. For example, a 1000 megawatt MHD generator can be construed using superconducting magnets to weigh roughly 42,000 pounds and can be readily air lifted.
This invention has a phenomenal variety of possible ramifications and potential future developments. As alluded to earlier, missile or aircraft destruction, deflection, or confusion could result, particularly when relativistic particles are employed. Also, large regions of the atmosphere could be lifted to an unexpectedly high altitude so that missiles encounter unexpected and unplanned drag forces with resultant destruction or deflection of same. Weather modification is possible by, for example, altering upper atmosphere wind patterns or altering solar absorption patterns by constructing one or more plumes of atmospheric particles which will act as a lens or focusing device. Also as alluded to earlier, molecular modifications of the atmosphere can take place so that positive environmental effects can be achieved. Besides actually changing the molecular composition of an atmospheric region, a particular molecule or molecules can be chosen for increased presence. For example, ozone, nitrogen, etc. concentrations in the atmosphere could be artificially increased. Similarly, environmental enhancement could be achieved by causing the breakup of various chemical entities such as carbon dioxide, carbon monoxide, nitrous oxides, and the like. tras*portation of entities can also be realized when advantage is taken of the drag effects caused by regions of the atmosphere moving up along diverging field lines. Small micron sized particles can be then tras*ported, and, under certain circumstances and with the availability of sufficient energy, larger particles or objects could be similarly affected. Particles with desired characteristics such as tackiness, reflectivity, absorptivity, etc., can be tras*ported for specific purposes or effects. For example, a plume of tacky particles could be established to increase the drag on a missile or satellite passing therethrough. Even plumes of plasma having substantially less charged particle density than described above will produce drag effects on missiles which will affect a lightweight (dummy) missile in a manner substantially different than a heavy (live) missile and this affect can be used to distinguish between the two types of missiles. A moving plume could also serve as a means for supplying a space station or for focusing vast amount of sunlight on selected portions of the earth. Surveys of global scope could also be realized because the earth's natural magnetic field could be significantly altered in a controlled manner by plasma beta effects resulting in, for example, improved magnetotelluric surveys. Electromagnetic pulse defenses are also possible. The earth's magnetic field could be decreased or disrupted at appropriate altitudes to modify or eliminate the magnetic field in high Compton electron generation (e.g., from high altitude nuclear bursts) regions. High intensity, well controlled electrical fields can be provided in selected locations for various purposes. For example, the plasma sheath surrounding a missile or satellite could be used as a trigger for activating such a high intensity field to destroy the missile or satellite. Further, irregularities can be created in the ionosphere which will interfere with the normal operation of various types of radar, e.g., synthetic aperture radar. The present invention can also be used to create artificial belts of trapped particles which in turn can be studied to determine the stability of such parties. Still further, plumes in accordance with the present invention can be formed to simulate and/or perform the same ********s as performed by the detonation of a "heave" type nuclear device without actually having to detonate such a device. Thus it can be seen that the ramifications are numerous, far-reaching, and exceedingly varied in usefulness.
Method and apparatus for altering a region in the earth's atmosphere, ionosphere, and/or magnetosphere - Patent 4686605
Con el traductor google. http://tras*late.google.es/tras*lat...,+ionosphere,+and/or+magnetosphere&hl=es&sa=G
Method and apparatus for altering a region in the earth's atmosphere, ionosphere, and/or magnetosphere United States Patent 4686605
Inventors:Eastlund, Bernard J. (Spring, TX)
Application Number:06/690333 Publication Date:08/11/1987 Filing Date:01/10/1985 Export Citation:Click for automatic bibliography generation Assignee:APTI, Inc. (Los Angeles, CA)
Primary Class:361/231 Other Classes:380/59, 244/158.100, 89/1.110 International Classes:F41G7/22; F41H13/00; H01Q1/36; H05H1/18; F41G7/20; H05H1/02; H05C3/00; H05B6/64; H05H1/46 Field of Search:361/230, 361/231, 244/158R, 376/100, 89/1.11, 380/59
Other References:Liberty Magazine, (2/35) p. 7 N. Tesla.
New York Times (9/22/40) Section 2, p. 7 W. L. Laurence.
New York Times (12/8/15) p. 8 Col. 3.
Primary Examiner:Cangialosi, Salvatore Attorney, Agent or Firm:Macdonald, Roderick W.
Claims:I claim:
1. A method for altering at least one region normally existing above the earth's surface with electromagnetic radiation using naturally-occurring and diverging magnetic field lines of the earth comprising tras*mitting first electromagnetic radiation at a frequency between 20 and 7200 kHz from the earth's surface, said tras*mitting being conducted essentially at the outset of tras*mission substantially parallel to and along at least one of said field lines, adjusting the frequency of said first radiation to a value which will excite electron cyclotron resonance at an initial elevation at least 50 km above the earth's surface, whereby in the region in which said electron cyclotron resonance takes place heating, further ionization, and movement of both charged and neutral particles is effected, said cyclotron resonance excitation of said region is continued until the electron concentration of said region reaches a value of at least 106 per cubic centimeter and has an ion energy of at least 2 ev.
2. The method of claim 1 including the step of providing artificial particles in said at least one region which are excited by said electron cyclotron resonance.
3. The method of claim 2 wherein said artificial particles are provided by injecting same into said at least one region from an orbiting satellite.
1. Technical Field
This invention relates to a method and apparatus for altering at least one selected region normally existing above the earth's surface and more particularly relates to a method and apparatus for altering said at least one region by initially tras*mitting electromagnetic radiation from the earth's surface essentially parallel to and along naturally-occurring, divergent magnetic field lines which extend from the earth's surface through the region or regions to be altered.
2. Background Art
In the late 1950's, it was discovered that naturally-occuring belts exist at high altitudes above the earth's surface, and it is now established that these belts result from charged electrons and ions becoming trapped along the magnetic lines of force (field lines) of the earth's essentially dipole magnetic field. The trapped electrons and ions are confined along the field lines between two magnetic mirrors which exist at spaced apart points along those field lines. The trapped electrons and ions move in helical paths around their particular field lines and "bounce" back and forth between the magnetic mirrors. These trapped electrons and ions can oscillate along the field lines for long periods of time.
In the past several years, substantial effort has been made to understand and explain the phenomena involved in belts of trapped electrons and ions, and to explore possible ways to control and use these phenomena for beneficial purposes. For example, in the late 1950's and early 1960's both the United States and U.S.S.R. detonated a series of nuclear devices of various yields to generate large numbers of charged particles at various altitudes, e.g., 200 kilometers (km) or greater. This was done in order to establish and study artifical belts of trapped electrons and ions. These experiments established that at least some of the extraneous electrons and ions from the detonated devices did become trapped along field lines in the earth's magnetosphere to form artificial belts which were stable for prolonged periods of time. For a discussion of these experiments see "The Radiation Belt and Magnetosphere", W. N. Hess, Blaisdell Publishing Co., 1968, pps. 155 et sec.
Other proposals which have been advanced for altering existing belts of trapped electrons and ions and/or establishing similar artificial belts include injecting charged particles from a satellite carrying a payload of radioactive beta-decay material or alpha emitters; and injecting charged particles from a satellite-borne electron accelerator. Still another approach is described in U.S. Pat. No. 4,042,196 wherein a low energy ionized gas, e.g., hydrogen, is released from a synchronous orbiting satellite near the apex of a radiation belt which is naturally-occurring in the earth's magnetosphere to produce a substantial increase in energetic particle precipitation and, under certain conditions, produce a limit in the number of particles that can be stably trapped. This precipitation effect arises from an enhancement of the whistler-mode and ion-cyclotron mode interactions that result from the ionized gas or "cold plasma" injection.
It has also been proposed to release large clouds of barium in the magnetosphere so that photoionization will increase the cold plasma density, thereby producing electron precipitation through enhanced whistler-mode interactions.
However, in all of the above-mentioned approaches, the mechanisms involved in triggering the change in the trapped particle phenomena must be actually positioned within the affected zone, e.g., the magnetosphere, before they can be actuated to effect the desired change.
The earth's ionosphere is not considered to be a "trapped" belt since there are few trapped particles therein. The term "trapped" herein refers to situations where the force of gravity on the trapped particles is balanced by magnetic forces rather than hydrostatic or collisional forces. The charged electrons and ions in the ionosphere also ***ow helical paths around magnetic field lines within the ionosphere but are not trapped between mirrors, as in the case of the trapped belts in the magnetosphere, since the gravitational force on the particles is balanced by collisional or hydrostatic forces.
In recent years, a number of experiments have actually been carried out to modify the ionosphere in some controlled manner to investigate the possibility of a beneficial result. For detailed discussions of these operations see the ***owing papers: (1) Ionospheric Modification Theory; G. Meltz and F. W. Perkins; (2) The Platteville High Power Facility; Carrol et al.; (3) Arecibo Heating Experiments; W. E. relleniton and H. C. Carlson, Jr.; and (4) Ionospheric Heating by Powerful Radio Waves; Meltz et al., all published in Radio Science, Vol. 9, No. 11, November, 1974, at pages 885-888; 889-894; 1041-1047; and 1049-1063, respectively, all of which are incorporated herein by reference. In such experiments, certain regions of the ionosphere are heated to change the electron density and temperature within these regions. This is accomplished by tras*mitting from earth-based antennae high frequency electromagnetic radiation at a substantial angle to, not parallel to, the ionosphere's magnetic field to heat the ionospheric particles primarily by ohmic heating. The electron temperature of the ionosphere has been raised by hundreds of degrees in these experiments, and electrons with several electron volts of energy have been produced in numbers sufficient to enhance airglow. Electron concentrations have been reduced by a few percent, due to expansion of the plasma as a result of increased temperature.
In the Elmo Bumpy Torus (EBT), a controlled fusion device at the Oak Ridge National Laboratory, all heating is provided by microwaves at the electron cyclotron resonance interaction. A ring of hot electrons is formed at the earth's surface in the magnetic mirror by a combination of electron cyclotron resonance and stochastic heating. In the EBT, the ring electrons are produced with an average "temperature" of 250 kilo electron volts or kev (2.5×10 9 K) and a plasma beta between 0.1 and 0.4; see, "A Theoretical Study of Electron--Cyclotron Absorption in Elmo Bumpy Torus", Batchelor and Goldfinger, Nuclear Fusion, Vol. 20, No. 4 (1980) pps. 403-418.
Electron cyclotron resonance heating has been used in experiments on the earth's surface to produce and accelerate plasmas in a diverging magnetic field. Kosmahl et al. showed that power was tras*ferred from the electromagnetic waves and that a fully ionized plasma was accelerated with a divergence angle of roughly 13 degrees. Optimum neutral gas density was 1.7×10 14 per cubic centimeter; see, "Plasma Acceleration with Microwaves Near Cyclotron Resonance", Kosmahl et al., Journal of Applied Physics, Vol. 38, No. 12, Nov., 1967, pps. 4576-4582.
DISCLOSURE OF THE INVENTION
The present invention provides a method and apparatus for altering at least one selected region which normally exists above the earth's surface. The region is excited by electron cyclotron resonance heating of electrons which are already present and/or artifically created in the region to thereby increase the charged particle energy and ultimately the density of the region.
In one embodiment this is done by tras*mitting circularly polarized electromagnetic radiation from the earth's surface at or near the location where a naturally-occurring dipole magnetic field (force) line intersects the earth's surface. Right hand circular polarization is used in the northern hemisphere and left hand circular polarization is used in the southern hemisphere. The radiation is deliberately tras*mitted at the outset in a direction substantially parallel to and along a field line which extends upwardly through the region to be altered. The radiation is tras*mitted at a frequency which is based on the gyrofrequency of the charged particles and which, when applied to the at least one region, excites electron cyclotron resonance within the region or regions to heat and accelerate the charged particles in their respective helical paths around and along the field line. Sufficient energy is employed to cause ionization of neutral particles (molecules of oxygen, nitrogen and the like, particulates, etc.) which then become a part of the region thereby increasing the charged particle density of the region. This effect can further be enhanced by providing artificial particles, e.g., electrons, ions, etc., directly into the region to be affected from a rocket, satellite, or the like to supplement the particles in the naturally-occurring plasma. These artificial particles are also ionized by the tras*mitted electromagnetic radiation thereby increasing charged particle density of the resulting plasma in the region.
In another embodiment of the invention, electron cyclotron resonance heating is carried out in the selected region or regions at sufficient power levels to allow a plasma present in the region to generate a mirror force which forces the charged electrons of the altered plasma upward along the force line to an altitude which is higher than the original altitude. In this case the relevant mirror points are at the base of the altered region or regions. The charged electrons drag ions with them as well as other particles that may be present. Sufficient power, e.g., 10 15 joules, can be applied so that the altered plasma can be trapped on the field line between mirror points and will oscillate in space for prolonged periods of time. By this embodiment, a plume of altered plasma can be established at selected locations for communication modification or other purposes.
In another embodiment, this invention is used to alter at least one selected region of plasma in the ionosphere to establish a defined layer of plasma having an increased charged particle density. Once this layer is established, and while maintaining the tras*mission of the main beam of circularly polarized electromagnetic radiation, the main beam is modulated and/or at least one second different, modulated electromagnetic radiation beam is tras*mitted from at least one separate source at a different frequency which will be absorbed in the plasma layer. The amplitude of the frequency of the main beam and/or the second beam or beams is modulated in resonance with at least one known oscillation mode in the selected region or regions to excite the known oscillation mode to propagate a known frequency wave or waves throughout the ionosphere.
...
The generation of electricity by motion of a conducting fluid through a magnetic field, i.e., magnetohydrodynamics (MHD), provides a method of electric power generation without moving mechanical parts and when the conducting fluid is a plasma formed by combustion of a fuel such as natural gas, an idealized combination of apparatus is realized since the very clean-burning natural gas forms the conducting plasma in an efficient manner and the thus formed plasma, when passed through a magnetic field, generates electricity in a very efficient manner. Thus, the use of fuel source 42 to generate a plasma by combustion thereof for the generation of electricity essentially at the site of occurrence of the fuel source is unique and ideal when high power levels are required and desirable field lines 11 intersect the earth's surface 40 at or near the site of fuel source 42. A particular advantage for MHD generators is that they can be made to generate large amounts of power with a small volume, light weight device. For example, a 1000 megawatt MHD generator can be construed using superconducting magnets to weigh roughly 42,000 pounds and can be readily air lifted.
This invention has a phenomenal variety of possible ramifications and potential future developments. As alluded to earlier, missile or aircraft destruction, deflection, or confusion could result, particularly when relativistic particles are employed. Also, large regions of the atmosphere could be lifted to an unexpectedly high altitude so that missiles encounter unexpected and unplanned drag forces with resultant destruction or deflection of same. Weather modification is possible by, for example, altering upper atmosphere wind patterns or altering solar absorption patterns by constructing one or more plumes of atmospheric particles which will act as a lens or focusing device. Also as alluded to earlier, molecular modifications of the atmosphere can take place so that positive environmental effects can be achieved. Besides actually changing the molecular composition of an atmospheric region, a particular molecule or molecules can be chosen for increased presence. For example, ozone, nitrogen, etc. concentrations in the atmosphere could be artificially increased. Similarly, environmental enhancement could be achieved by causing the breakup of various chemical entities such as carbon dioxide, carbon monoxide, nitrous oxides, and the like. tras*portation of entities can also be realized when advantage is taken of the drag effects caused by regions of the atmosphere moving up along diverging field lines. Small micron sized particles can be then tras*ported, and, under certain circumstances and with the availability of sufficient energy, larger particles or objects could be similarly affected. Particles with desired characteristics such as tackiness, reflectivity, absorptivity, etc., can be tras*ported for specific purposes or effects. For example, a plume of tacky particles could be established to increase the drag on a missile or satellite passing therethrough. Even plumes of plasma having substantially less charged particle density than described above will produce drag effects on missiles which will affect a lightweight (dummy) missile in a manner substantially different than a heavy (live) missile and this affect can be used to distinguish between the two types of missiles. A moving plume could also serve as a means for supplying a space station or for focusing vast amount of sunlight on selected portions of the earth. Surveys of global scope could also be realized because the earth's natural magnetic field could be significantly altered in a controlled manner by plasma beta effects resulting in, for example, improved magnetotelluric surveys. Electromagnetic pulse defenses are also possible. The earth's magnetic field could be decreased or disrupted at appropriate altitudes to modify or eliminate the magnetic field in high Compton electron generation (e.g., from high altitude nuclear bursts) regions. High intensity, well controlled electrical fields can be provided in selected locations for various purposes. For example, the plasma sheath surrounding a missile or satellite could be used as a trigger for activating such a high intensity field to destroy the missile or satellite. Further, irregularities can be created in the ionosphere which will interfere with the normal operation of various types of radar, e.g., synthetic aperture radar. The present invention can also be used to create artificial belts of trapped particles which in turn can be studied to determine the stability of such parties. Still further, plumes in accordance with the present invention can be formed to simulate and/or perform the same ********s as performed by the detonation of a "heave" type nuclear device without actually having to detonate such a device. Thus it can be seen that the ramifications are numerous, far-reaching, and exceedingly varied in usefulness.
Method and apparatus for altering a region in the earth's atmosphere, ionosphere, and/or magnetosphere - Patent 4686605